
End-to-end Flow Correlation Tracking with Spatial-temporal Attention

Zheng Zhu1,2, Wei Wu3, Wei Zou1,2,4, Junjie Yan3

1Institute of Automation, Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China

3SenseTime Group Limited, Beijing, China
4TianJin Intelligent Tech.Institute of CASIA Co.,Ltd, Tianjin, China

{zhuzheng2014,wei.zou}@ia.ac.cn {wuwei,yanjunjie}@sensetime.com

Abstract

Discriminative correlation filters (DCF) with deep con-

volutional features have achieved favorable performance in

recent tracking benchmarks. However, most of existing D-

CF trackers only consider appearance features of curren-

t frame, and hardly benefit from motion and inter-frame

information. The lack of temporal information degrades

the tracking performance during challenges such as par-

tial occlusion and deformation. In this paper, we propose

the FlowTrack, which focuses on making use of the rich

flow information in consecutive frames to improve the fea-

ture representation and the tracking accuracy. The Flow-

Track formulates individual components, including optical

flow estimation, feature extraction, aggregation and cor-

relation filters tracking as special layers in network. To

the best of our knowledge, this is the first work to jointly

train flow and tracking task in deep learning framework.

Then the historical feature maps at predefined intervals are

warped and aggregated with current ones by the guiding of

flow. For adaptive aggregation, we propose a novel spatial-

temporal attention mechanism. In experiments, the pro-

posed method achieves leading performance on OTB2013,

OTB2015, VOT2015 and VOT2016.

1. Introduction

Visual object tracking, which tracks a specified target in

a changing video sequence automatically, is a fundamental

problem in many computer vision topics such as visual anal-

ysis, automatic driving, pose estimation. A core problem of

tracking is how to detect and locate the object accurately

in changing scenarios with occlusions, shape deformation,

illumination variations [42, 20].

Recently, significant attention has been paid to discrim-

inative correlation filters (DCF) based methods for visual

tracking such as KCF [14], SAMF [22], LCT [26], MUSTer
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Figure 1: Tracking results comparison of our approach with three state-of-the-art

trackers in the challenging scenarios. Best viewed on color display.

[17], SRDCF [7] and CACF [27]. Most of these methods

use handcrafted features, which hinder their accuracy and

robustness. Inspired by the success of convolution neural

networks (CNN) in object recognition, the visual tracking

community has been focused on the deep trackers that ex-

ploit the strength of CNN in recent years. Representative

deep trackers include DeepSRDCF [5], HCF [25], SiamFC

[2] and CFNet [37]. However, most existing trackers on-

ly consider appearance features of current frame, and can

hardly benefit from motion and inter-frame information.

The lack of temporal information degrades the tracking per-

formance during challenges such as partial occlusion and

deformation. Although some trackers utilize optical flow

to upgrade performance [36, 11], the flow feature is off-the-

shelf and not trained end-to-end. These methods do not take

full advantage of flow information.

In this paper, we develop an end-to-end flow correlation

tracking framework (FlowTrack) to utilize both the flow in-

formation and appearance features, which improves the fea-

ture representation and tracking accuracy. Specifically, we
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formulate the optical flow estimation, feature extraction, ag-

gregation and correlation filter tracking as special layers in

network, which enables end-to-end learning. Then the pre-

vious frames are warped to specified frame guided by flow

information, and they are aggregated for consequent cor-

relation filter tracking. For adaptive aggregation, a novel

spatial-temporal attention mechanism is developed. In spa-

tial attention, feature maps are weighted in planar position

using spatial similarities. Channels of feature maps are then

re-weighted to take temporal attention into account.

Features from different frames provide diverse informa-

tion for same object instance, such as different viewpoints,

deformation and varied illuminations. So appearance fea-

ture for tracked object can be enhanced by aggregating these

features. Note that the features of the same object instance

are usually not spatially aligned across frames due to video

motion. A naive feature fusion may even deteriorate the per-

formance because of misalignment. This suggests that it is

critical to model the motion during learning. To this end, we

propose to end-to-end train the flow estimation and adaptive

feature aggregation using large-scale tracking dataset. Fig-

ure 1 shows four challenging benchmark sequences which

undergo illumination variation, viewpoint changes and de-

formation. The FlowTrack can handle these challenges due

to the aggregation of diverse feature maps. In experiments,

we achieve leading performance on four challenging track-

ing benchmarks.

The contributions of this paper can be summarized in

three folds. 1) We develop an end-to-end flow correlation

tracking framework to improve the feature representation

and the tracking accuracy. To the best of our knowledge,

this is the first work to jointly train flow and tracking task

in deep learning framework. 2) A novel spatial-temporal

attention mechanism is proposed, which can adaptively ag-

gregate the warped and current feature maps. 3) Experi-

ments on OTB2013, OTB2015, VOT2015 and VOT2016

shows that the proposed method performs favorably against

existing state-of-the-art methods.

2. Related works

Visual tracking is a significant problem in computer vi-

sion systems and a series of approaches have been proposed

in recent years. Since our main contribution is an end-

to-end framework for flow correlation tracking, we give a

brief review on three directions closely related to this work:

DCF-based trackers, CNN-based trackers, and optical flow

in visual recognition.

2.1. DCF trackers

In recent tracking community, significant attention has

been paid to discriminative correlation filters (DCF) based

methods [3, 15, 14, 22, 6, 9, 1, 26, 17, 7, 27] because of

their efficiency and expansibility. MOSSE [3], CSK [15]

and KCF [14] are conventional DCF trackers. Many im-

provements for DCF tracking approaches have been pro-

posed, such as SAMF [22] and fDSST [6] for scale changes,

CN [9] and Staple [1] taking color information into accoun-

t, LCT [26] and MUSTer [17] for long-term tracking, SRD-

CF [7] and CACF [27]to mitigate boundary effects. Most of

these methods use handcrafted features, which hinder their

accuracy and robustness.

Inspired by the success of CNN in object classification

[21, 12], detection [33] and segmentation [23] tasks, re-

searchers in tracking community have started to focus on

the deep trackers that exploit the strength of CNN. Since D-

CF provides an excellent framework for recent tracking re-

search, the popular trend is the combination of DCF frame-

work and CNN features. In HCF [25] and HDT [32], CNN

are employed to extract features instead of handcrafted fea-

tures, and final tracking results are obtained by combining

hierarchical response and hedging weak trackers, respec-

tively. DeepSRDCF [5] exploits shallow CNN features in a

spatially regularized DCF framework. In above mentioned

methods, the chosen CNN features are always pre-trained in

different tasks and individual components in tracking sys-

tems are learned separately. So the achieved tracking re-

sults may be suboptimal. It is worth noting that CFNet

[37] and DCFNet [40] interpret the correlation filters as a

differentiable layer in a Siamese tracking framework, thus

achieving an end-to-end representation learning. The main

drawback is their unsatisfying performance.

2.2. CNNbased trackers

Except the combination of DCF framework and CNN

features, another trend in deep trackers is to design the

tracking networks and pre-train them in order to learn the

target-specific features and handle the challenges for each

new video. Bertinetto et.al [2] propose a fully convolu-

tional Siamese network (SiamFC) to estimate the feature

similarity region-wise between two frames. The network

is trained off-line and evaluated without any online fine-

tuning. Similar to SiamFC, in GOTURN tracker [13],

the motion between successive frames is predicted using

a deep regression network. MDNet [28] trains a small-

scale network by multi-domain methods, thus separating

domain independent information from domain-specific lay-

ers. CCOT [8] employs the implicit interpolation method

to solve the learning problem in the continuous spatial do-

main. CREST [35] treats tracking process as convolution

and applies residual learning to take appearance changes in-

to account. Similarly, UCT [48] treats feature extractor and

tracking process both as convolution operation and trains

them jointly, enabling learned CNN features tightly cou-

pled to tracking process. All these trackers only consider

appearance features in current frame and can hardly benefit

from motion and inter-frame information. In this paper, we
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make full use of these information by aggregating flow and

correlation tracking in an end-to-end framework.

2.3. Optical flow for visual recognition

Flow information has been exploited to be helpful in

computer vision tasks. In pose estimation [31], optical

flow is used to align heatmap predictions from neighbour-

ing frames. [30] applies flow to the current frame to pre-

dict next frame. In [45], flow is used to explicitly model

how image attributes vary with its deformation. DFF [47]

and FGFA [46] utilize flow information to speed up vision

recognition (segmentation and video detection) and upgrade

performance, respectively. In DFF, expensive convolutional

sub-network is performed only on sparse key frames, and

their deep feature maps are propagated to other frames via

a flow field. In FGFA, nearby features are aggregated along

the motion paths using flow information, thus improving the

video recognition accuracy. Recently, some trackers also u-

tilize optical flow to upgrade performance [36, 11], while

the flow feature is off-the-shelf and not trained end-to-end.

In this paper, we formulate the optical flow estimation in an

end-to-end tracking framework and model the motion dur-

ing learning.

3. End-to-end flow correlation tracking

In this section, flow correlation network is given at first

to describe the overall training architecture. Then we in-

troduce the correlation filter layer and the aggregation of

optical flow. In order to adaptively weight the aggregat-

ed frames at each spatial location and temporal channels, a

novel spatial-temporal attention mechanism is designed. At

last, online tracking is described consisting of model updat-

ing and scales.

3.1. Training network architecture

The overall training framework of our tracker consists of

FeatureNet (feature extraction sub-network), FlowNet [10],

warping module, spatial-temporal attention module and CF

tracking layer. As shown in Figure 2, overall training archi-

tecture adopts Siamese network consisting of historical and

current branches. In historical branch, appearance features

and flow information are extracted by the FeatureNet and

FlowNet at first. Then previous frames at predefined inter-

vals (5 frames in experiments, T = 6) is warped to t − 1
frame guided by flow information. Meanwhile, a spatial-

temporal attention module is designed to weight the warped

feature maps. In another branch, the feature maps of cur-

rent frame is extracted by FeatureNet. Finally, both two

branches are fed into subsequent correlation filters layer for

training. All the modules are differentiable and trained end-

to-end.

3.2. Correlation filters layer

Discriminative correlation filters (DCF) with deep con-

volutional features have shown favorable performance in re-

cent benchmarks [25, 32, 5]. Nonetheless, the chosen CN-

N features are always pre-trained in different tasks and in-

dividual components in tracking systems are learned sepa-

rately, thus the achieved tracking results may be suboptimal.

Recently, CFNet [37] and DCFNet [40] interpret the corre-

lation filters as a differentiable layer in Siamese framework,

thus performing end-to-end representation learning.

In DCF tracking framework, the aim is to learn a series

of convolution filters f from training samples (xk, yk)k=1:t.

Each sample is extracted using the FeatureNet from an

image region. Assuming sample has the spatial size

M × N , the output has the spatial size m × n (m =
M/strideM , n = N/strideN ). The desired output yk is

a response map which includes a target score for each loca-

tion in the sample xk. The response of the filters on sample

x is given by

R(x) =
d
∑

l=1

ϕl(x) ∗ fl (1)

where ϕl(x) and fl is l-th channel of extracted CNN features

and desired filters, respectively, ∗ denotes circular correla-

tion operation. The filters can be trained by minimizing er-

ror which is obtained between the response R(xk) on sam-

ple xk and the corresponding Gaussian label yk:

e =
∑

k

||R(xk)− yk||
2
+ λ

d
∑

l=1

||fl||
2

(2)

The second term in (2) is a regularization with a weight pa-

rameter λ. The solution can be gained as [6]:

fl = F−1

(

ϕ̂l(x)⊙ ŷ
∗

∑D

k=1
ϕ̂k(x)⊙ (ϕ̂k(x))∗ + λ

)

(3)

where the hat symbol represents the discrete Fourier trans-

form F of according variables, ∗ represents the complex

conjugate of according variables, D is the channel number-

s, and ⊙ denotes Hadamard product.

In test stage, the trained filters are used to evaluate an

image patch centered around the predicted target location:

R(z) =

d
∑

l=1

ϕl(z) ∗ fl (4)

where ϕ(z) denotes the feature maps extracted from tracked

target position of last frame including context.

In order to unify the correlation filters in an end-to-end

network, we formulate above solution as correlation filters

layer. Given the feature maps of search patch ϕ(z), the loss
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Figure 2: The overall training network. The network adopts Siamese architecture consisting of historical and current branches. The dashed boxes in left part represent concatenating

two input frames for FlowNet, and the feature maps in dashed box (middle part) are weighted by output of spatial-temporal attention module. Best viewed on color display.

function is formulated as:

L(θ) =||R(θ)− R̃||2 + γ||θ||2

s.t. R(θ) =

d
∑

l=1

ϕl(z,θ) ∗ fl

fl =F−1

(

ϕ̂l(x,θ)⊙ ŷ
∗

∑D

k=1
ϕ̂k(x,θ)⊙ (ϕ̂k(x,θ))∗ + λ

)

(5)

where R̃ is desired response, and it is a gaussian distribution

centered at the real target location. θ refers to the param-

eters of the whole network. The back-propagation of loss

with respect to ϕ(x) and ϕ(z) are formulated as [40]:

∂L

∂ϕl(x)
= F−1

(

∂L

∂(ϕ̂l(x))∗
+

(

∂L

∂(ϕ̂l(x))

)

∗
)

∂L

∂ϕl(z)
= F−1

(

∂L

∂(ϕ̂l(z))∗

) (6)

Once the back-propagation is derived, the correlation fil-

ters can be formulated as a layer in network, which is called

CF layer in next sections.

3.3. Aggregation using optical flow

Optical flow encodes correspondences between two in-

put images. We warp the feature maps from the neighbor

frames to specified frame according to the flow:

ϕi→t−1 = W(ϕi, F low(Ii, It−1)) (7)

where ϕi→t−1 denotes the feature maps warped from pre-

vious frame i to specified t − 1 frame. Flow(Ii, It−1) is

the flow field estimated through a flow network [10], which

projects a location p in frame i to the location p + δp in

specified frame t− 1. The warping operation is implement-

ed by the bilinear function applied on all the locations for

each channel in the feature maps. The warping in certain

channel is performed as:

ϕm
i→t−1

(p) =
∑

q

K(q, p + δp)ϕm
i (q) (8)

where p = (px, py) means 2D locations, and δp =
Flow(Ii, It−1)(p) represents flow in according position-

s, m indicates a channel in the feature maps ϕ(x), q =
(qx, qy) enumerates all spatial locations in the feature maps,

and K indicates the bilinear interpolation kernel.

Since we adopt end-to-end training, the back-

propagation of ϕi→t−1 with respect to ϕi and flow

δp (i.e. Flow(Ii, It−1)(p)) is derived as:

∂ϕm
i→t−1

(p)

∂ϕm
i (q)

=K(q, p + δp)

∂ϕm
i→t−1

(p)

∂F low(Ii, It−1)(p)
=
∑

q

∂K(q, p + δp)

∂δp
ϕm
i (q)

(9)

Once the feature maps in previous frames are warped to

specified frame, they provide diverse information for same

object instance, such as different viewpoints, deformation

and varied illuminations. So appearance feature for tracked

object can be enhanced by aggregating these feature maps.

The aggregation results are obtained as:

ϕ(x) = ϕt−1
=

t−1
∑

i=t−T

wi→t−1ϕi→t−1 (10)

where T is predefined intervals, wi→t−1 is adaptive weight-

s at different spatial locations and feature channels. The

adaptive weights are decided by proposed novel spatial-

temporal attention mechanism which is described in detail

in next subsection.

3.4. Spatialtemporal attention

The adaptive weights indicate the importance of aggre-

gated frames at each spatial location and temporal channel-
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s. For spatial location, we adopt cosine similarity metric to

measure the similarity between the warped features and the

features extracted from the specified t − 1 frame. For dif-

ferent channels, we further introduce temporal attention to

adaptively re-calibrate temporal channels [18].

3.4.1 Spatial attention

Spatial attention indicates the different weights at different

spatial locations. At first, a bottleneck sub-network projects

the ϕ into a new embedding ϕe, then the cosine similari-

ty metric is adopted to measure the similarity between the

warped features and the features extracted from the speci-

fied t− 1 frame:

wi→t−1(p) = SoftMax

(

ϕe
i→t−1

(p)ϕe
t−1

(p)
∣

∣ϕe
i→t−1

(p)
∣

∣

∣

∣ϕe
t−1

(p)
∣

∣

)

(11)

where SoftMax operation is applied at channels to nor-

malize the weight wi→t−1 for each spatial location p over

the nearby frames. Intuitively speaking, in spatial attention,

if the warped features ϕe
i→t−1

(p) is close to the features

ϕe
t−1

(p), it is assigned with a larger weight. Otherwise, a

smaller weight is assigned.

3.4.2 Temporal attention

The weight wi→t−1 obtained by spatial attention has largest

value at each position in t− 1 frame because t− 1 frame is

most similar with its own according to cosine measurement.

We further propose temporal attention mechanism to solve

this problem by adaptively re-calibrating temporal channel

as shown in Figure 3. The channel number of spatial atten-

tion out is equal to the aggregated frame numbers T , and we

expect to re-weight the channel importance by introducing

temporal information.

Specifically, the output of spatial attention module is

firstly passed through a global pooling layer to produce a

channel-wise descriptor. Then three fully connected (FC)

layers are added, in which learned for each channel by a

self-gating mechanism based on channel dependence. This

is followed by re-weighting the original feature maps to

generate the output of temporal attention module.

The weights in temporal frames (channels) are visual-

ized to illustrate the results of our temporal attention. In

Figure 4, the first and second row indicate the normal and

challenging scenarios, respectively. As shown in top left

corner in each frames, the weights are approximately equal

in normal scenarios. In challenging scenarios, the weights

are smaller in low quality frames while larger in high qual-

ity frames, which shows re-calibration role of the temporal

attention module.

3.5. Online Tracking

In this subsection, tracking network architecture is de-

scribed at first which is denoted as FlowTrack. Then we
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Figure 3: The temporal attention sub-network architecture. Channels with different

colors are re-calibrated by different weights. Best viewed on color display.���� ���� ���� ������������ �������� ���	 �������� ���	
Figure 4: The visualization of weights in temporal frames (channels). The first and

second row show normal and challenging scenarios, respectively. The number in top

left corner indicates learned temporal weights. Best viewed on color display.

present the tracking process through the aspects of scale

handing and model updating.

Tracking network architecture After off-line training as

described above, the learned network is used to perform on-

line tracking by equation (4). At first, the images are passed

through trained FeatureNet and FlowNet. Then the feature

maps in previous frames are warped to the current one ac-

cording to flow information. Warped feature maps as well

as the current frame’s are embedded and then weighted us-

ing spatial-temporal attention. The estimation of the current

target state is obtained by finding the maximum response in

the score map.

Model updating Most of tracking approaches update

their model in each frame or at a fixed interval [15, 14,

25, 8]. However, this strategy may introduce false back-

ground information when the tracking is inaccurate, target

is occluded or out of view. In this paper, model updating

is performed when criterions peak-versus-noise ratio (PN-

R) and maximum value of response map are satisfied at the

same time. Readers are referred to [48] for details. Only CF

tracking module is updated as:

fl = F−1

(

∑p

t=1
αtϕ̂

l(xt)⊙ ŷt
∗

∑p

t=1
αt(
∑D

k=1
ϕ̂k(xt)⊙ (ϕ̂k(xt))∗ + λ)

)

(12)
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where αt represents the impact of sample xt, and p equals

to the frame index.

Scales To handle the scale change, we follow the ap-

proach in [43] and use patch pyramid with the scale factors

{as | s = ⌊−S−1

2
⌋, ⌊−S−3

2
⌋, ..., 0, ..., ⌊S−1

2
⌋}.

4. Experiments

Experiments are performed on four challenging track-

ing datasets: OTB2013 with 50 videos, OTB2015 with 100

videos, VOT2015 and VOT2016 with 60 videos. All the

tracking results use the reported results to ensure a fair com-

parison.

4.1. Implementation details

We adopt three convolution layers (3× 3× 128, 3× 3×
128, 3 × 3 × 96) in FeatureNet, and FlowNet follows the

implementation in [10]. Embedding sub-network in spa-

tial attention consists of three convolution layers (1 × 1 ×
64, 3× 3× 64, 1× 1× 256) which are randomly initialized.

Fully connected (FC) layers in temporal attention is set to

1×1×128, 1×1×128, 1×1×6. First two and last FC layer

are followed by ReLU and Sigmoid, respectively. Our train-

ing data comes from VID [34], containing the training and

validation set. The frame number of aggregation is set to 5

(T in Figure 2 is set to 6). In each frame, patch is cropped

around ground truth with a 1.56 padding and resized into

128∗128. We apply stochastic gradient descent (SGD) with

momentum of 0.9 to end-to-end train the network and set

the weight decay λ to 0.005. The model is trained for 50 e-

pochs with a learning rate of 10−5. In online tracking, scale

step a and number S is set to 1.025 and 5, scale penalty and

model updating rate is set to 0.9925 and 0.015. The pro-

posed FlowTrack is implemented using MatConvNet [38]

on a PC with an Intel i7 6700 CPU, 48 GB RAM, Nvidi-

a GTX TITAN X GPU. Average speed of the tracker is 12

FPS and the experimental results can be found in https:

//github.com/zhengzhugithub/FlowTrack.

4.2. Results on OTB

OTB2013 [41] contains 50 fully annotated sequences

that are collected from commonly used tracking sequences.

OTB2015 [42] is the extension of OTB2013 and contains

100 video sequences. Some new sequences are more diffi-

cult to track. The evaluation is based on two metrics: preci-

sion plot and success plot. The precision plot shows the per-

centage of frames that the tracking results are within certain

distance determined by given threshold to the ground truth.

The value when threshold is 20 pixels is always taken as the

representative precision score. The success plot shows the

ratios of successful frames when the threshold varies from

0 to 1, where a successful frame means its overlap is larger
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Figure 5: Precision and success plots on OTB2013. The numbers in the legend indi-

cate the representative precisions at 20 pixels for precision plots, and the area-under-

curve scores for success plots. Best viewed on color display.

than this given threshold. The area under curve (AUC) of

each success plot is used to rank the tracking algorithm.

4.2.1 Results of OTB2013

In this experiment, we compare our method against recent

trackers that presented at top conferences and journals, in-

cluding CREST (ICCV 2017) [35], MCPF (CVPR 2017)

[44], UCT (ICCV 2017 Workshop) [48], CACF (CVPR

2017) [27], CFNet (CVPR 2017) [37], CSR-DCF (CVPR

2017) [24], CCOT (CVPR 2016) [8], SiamFC (ECCV

2016) [2], Staple (CVPR 2016) [1], SCT (CVPR 2016)

[4], HDT (CVPR 2016) [32], DLSSVM (CVPR 2016) [29],

SINT+ (CVPR 2016) [36], FCNT (ICCV 2015) [39], CNN-

SVM (ICML 2015) [16], HCF (ICCV 2015) [25], KCF (T-

PAMI 2015) [14]. The one-pass evaluation (OPE) is em-

ployed to compare these trackers.

Figure 5 illustrates the precision and success plots based

on center location error and bounding box overlap ratio, re-

spectively. It clearly illustrates that our algorithm, denot-

ed by FlowTrack, outperforms the state-of-the-art trackers

significantly in both measures. In the success plot, our ap-

proach obtain an AUC score of 0.689, significantly outper-

forms the winner of VOT2016 (CCOT) and another tracker

using flow information (SINT+). The improvement ranges

are 1.7% and 3.4%, respectively. In the precision plot, our

approach obtains a score of 0.921, outperforms CCOT and

SINT+ by 2.2% and 3.9%, respectively.

The top performance can be attributed to that our method

makes use of the rich flow information to improve the fea-

ture representation and the tracking accuracy. What is more,

end-to-end training enables individual components in the

tracking system are tightly coupled to work. By contrast,

other trackers only consider appearance features, and hard-

ly benefit from motion and inter-frame information. What

is more, efficient updating and scale handling strategies en-

sure robustness of the tracker. It is worth noting that SINT+

adopts optical flow to filter out motion inconsistent candi-

dates in Siamese tracking framework, while the optical flow

is off-the-shelf and no end-to-end training is performed.
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Figure 6: Precision and success plots on OTB2015. The numbers in the legend indi-

cate the representative precisions at 20 pixels for precision plots, and the area-under-

curve scores for success plots. Best viewed on color display.
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Figure 7: EAO ranking with trackers in VOT2015. The better trackers are located at

the right. Best viewed on color display.

4.2.2 Results of OTB2015

In this experiment, we compare our method against re-

cent trackers, including CREST (ICCV 2017) [35], CFNet

(CVPR 2017) [37], MCPF (CVPR 2017) [44], UCT (ICCV

2017 Workshop) [48], DSST (T-PAMI 2017) [6], SiamFC

(ECCV 2016) [2], Staple (CVPR 2016) [1], HDT (CVPR

2016) [32], SINT (CVPR 2016) [36], DLSSVM (CVPR

2016) [29], CNN-SVM (ICML 2015) [16], HCF (ICCV

2015) [25], KCF (T-PAMI 2015) [14]. The one-pass evalu-

ation (OPE) is employed to compare these trackers.

Figure 6 illustrates the precision and success plots of the

compared trackers, respectively. The proposed FlowTrack

approach outperforms all the other trackers in terms of suc-

cess and precision scores. Specifically, our method achieves

a success score of 0.655, which outperforms the MCPF

(0.628) and CREST (0.623) method with a large margin.

4.3. Results on VOT

The Visual Object Tracking (VOT) challenges are well-

known competitions in tracking community, which have

held several times since 2013 and their results will be re-

ported at ICCV or ECCV. In this subsection, we compare

our method, FlowTrack, with entries in VOT2015 [20] and

VOT2016 [19].

Table 1: Comparisons with top trackers in VOT2015. Red, green and blue fonts

indicate 1st, 2nd, 3rd performance, respectively. Best viewed on color display.

Trackers EAO Accuracy Failures

FlowTrack 0.3405 0.57 0.95

DeepSRDCF 0.3181 0.56 1.05

EBT 0.3130 0.47 1.02

srdcf 0.2877 0.56 1.24

LDP 0.2785 0.51 1.84

sPST 0.2767 0.55 1.48

scebt 0.2548 0.55 1.86

nsamf 0.2536 0.53 1.29

struck 0.2458 0.47 1.61

rajssc 0.2458 0.57 1.63

s3tracker 0.2420 0.52 1.77

4.3.1 Results of VOT2015

VOT2015 [20] consists of 60 challenging videos that are au-

tomatically selected from a 356 sequences pool. The track-

ers in VOT2015 is evaluated by expected average overlap

(EAO) measure, which is the inner product of the empirical-

ly estimating the average overlap and the typical-sequence-

length distribution. The EAO measures the expected no-

reset overlap of a tracker run on a short-term sequence.

Besides, accuracy (mean overlap) and robustness (average

number of failures) are also reported.

In VOT2015 experiment, we present a state-of-the-art

comparison with the participants in the challenge according

to the latest VOT rules (see http://votchallenge.net). Fig-

ure 7 illustrates that our FlowTrack can rank 1st in 61 track-

ers according to EAO criterion. It is worth noting that MD-

Net [28] is not compatible with the latest VOT rules because

of OTB training data. In Table 1, we list the EAO, accuracy

and failures of FlowTrack and top 10 entries in VOT2015.

FlowTrack ranks 1st according to all 3 criterions. The top

performance can be attributed to the associating of flow in-

formation and end-to-end training framework.

4.3.2 Results of VOT2016

The datasets in VOT2016[19] are the same as VOT2015,

but the ground truth has been re-annotated. VOT2016 also

adopts EAO, accuracy and robustness for evaluations.

In experiment, we compare our method with participants

in challenges. Figure 8 illustrates that our FlowTrack can

rank 1st in 70 trackers according to EAO criterion. It is

worth noting that our method can operate at 12 FPS, which

is 40 times faster than CCOT [8] (0.3 FPS). For detailed per-

formance analysis, we further list accuracy and robustness

of representative trackers in VOT2016. As shown in Ta-

ble 2, the accuracy and robustness of proposed FlowTrack

can rank 1st and 2nd, respectively.

4.4. Ablation analyses

In this experiment, ablation analyses are performed to

illustrate the effectiveness of proposed components. To ver-

ify the contributions of each component in our algorithm,

we implement and evaluate four variations of our approach.

At first, the baseline is implemented that no flow informa-
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Figure 8: EAO ranking with trackers in VOT2016. The better trackers are located at

the right. Best viewed on color display.

Table 2: Comparisons with top trackers in VOT2016. Red, green and blue fonts

indicate 1st, 2nd, 3rd performance, respectively. Best viewed on color display.

Trackers EAO Accuracy Robustness

FlowTrack 0.334 0.578 0.241

CCOT 0.331 0.539 0.238

TCNN 0.325 0.554 0.268

Staple 0.295 0.544 0.378

EBT 0.291 0.465 0.252

DNT 0.278 0.515 0.329

SiamFC 0.277 0.549 0.382

MDNet 0.257 0.541 0.337

tion is utilized(denoted by no flow). Then the FlowNet is

fixed to compare with end-to-end training (denoted by fix

flow). To verify the superiority of proposed flow aggre-

gation and spatial-temporal attention strategy, we fuse the

warped feature maps by decaying with time (denoted by

decay). And the weight is obtained only by spatial atten-

tion, which is denoted as no ta (means no temporal atten-

tion). Analyses results include OTB2013 [41], OTB2015

[42], VOT2015 [20]and VOT2016[19]. AUC means area

under curve (AUC) of each success plot, and P20 represents

precision score at 20 pixels.

As shown in Table 3, the performances of all the vari-

ations are not as good as our full algorithm (denoted by

FlowTr) and each component in our tracking algorithm is

helpful to improve performance. Specifically, in terms of

no flow and FlowTr, the associating and assembling of the

flow information gains the performance with more than 6%
in all evaluation criterions. In terms of no flow, fix flow and

FlowTr, the performance of VOT even drops when FlowNet

is added but fixed, which verifies the necessity of end-to-end

training. Comparing decay with FlowTr, the superiority of

proposed flow aggregation is verified by gaining the EAO

in 2015 and 2016 by near 8%. Besides, temporal attention

further improves the tracking performance.

4.5. Qualitative Results

To visualize the superiority of flow correlation filters

framework, we show examples of FlowTrack results com-

pared to recent trackers on challenging sample videos. As

Table 3: Performance on benchmarks of FlowTrack and its variations

OTB2013

AUC

OTB2013

P20

OTB2015

AUC

OTB2015

P20

VOT2015

EAO

VOT2016

EAO

no flow 0.625 0.846 0.578 0.792 0.2637 0.2404

fix flow 0.617 0.853 0.583 0.813 0.2542 0.2291

decay 0.637 0.868 0.586 0.793 0.2584 0.2516

no ta 0.667 0.874 0.642 0.865 0.3109 0.2712

FlowTr 0.689 0.921 0.655 0.881 0.3405 0.3342

shown in Figure 1, the target in sequence singer2 undergoes

severe deformation. CCOT and CFNet lose the target from

#54 and CREST can not fit the scale change. In contrast, the

proposed FlowTrack results in successful tracking in this

sequence because feature representation is enhanced using

flow information. skating1 is a sequences with attributes of

illumination and pose variations, and proposed method can

handle these challenges while CCOT drift to background.

In sequence carscale, only FlowTrack can handle the s-

cale challenges in #197 and #252. In background clutter

of sequence bolt2, FlowTrack tracks the target successfully

while compared approaches drift to distracters.

5. Conclusions

In this work, we propose an end-to-end flow correlation

tracking framework which makes use of the rich flow infor-

mation in consecutive frames. Specifically, the frames in

certain intervals are warped to specified frame using flow

information and then they are aggregated for consequent

correlation filter tracking. For adaptive aggregation, a nov-

el spatial-temporal attention mechanism is developed. The

effectiveness of our approach is validated in OTB and VOT

datasets.
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